

Hub E2S MeSMic Metals in Environmental Systems Microbiology

An integrated approach to unravel metal ion interactions with microbial ecosystems at the molecular, cellular and community levels

David AMOUROUX, Marisol GONI, Régis GRIMAUD, Béatrice LAUGA, Robert DURAN, Ryszard LOBINSKI et collaborateurs

IPREM UMR 5254 CNRS-UPPA

energy environment solutions

Jeudi 29 novembre 2018

Hub MeSMIC: 6 scientific leaders and ca. 20 scientific & technical staff members from IPREM (CNRS/UPPA)

Applicants (Leaders)	Applicants (Partners)	Engineering		
		support		
(higeochemistry)	C. Cagnon (molecular biology),	MARSS/IPREM		
	C. Cravo-Laureau (microbial physiology)	O. Donard		
R. Duran, PR	O. Donard (analytical chemistry)	S. Berail		
(IIIICIODIal ECOlogy)	B. K. Hassani (genetics)	K. Bierla		
M. Goñi, MCF HDR (microbiology)	R. Guyoneaud (microbial physiology)	J. Szpunar		
(1116108101057)	L. Ouerdane (analytical chemistry)			
R. Grimaud, PR (molecular biology)	F. Rigal (biostatistics)	PREMICE/IPREM		
	Z. Pedrero (analytical chemistry)	C. Gassie		
	L Ronga (organic chemistry)	F. Hakil		
B. Lauga, PR (microbial ecology)	L. Konga (organic chemistry)	L. Urios		
	IVI. Sebilo (blogeochemistry)	A Carbon		
R. Lobinski, DR (analytical chemistry)	P. Sivadon (molecular biology)			

Hub MeSMic: Research workplan based on key scientific questions and achievements

Environmental relevance of metal-involving biological interactions:

-trace metals affect essential biological functions of microorganisms, health of ecosystems and global cycling of carbon and nitrogen.

-metal-biomolecule interactions from cellular to community level allow to better predict ecosystem responses and environmental risk.

- WP 0 Management, coordination, dissemination (scientific leaders)
- WP 1 Mercury, thiols and transformation processes in bacterial strains and communities (WPL: M. Goñi, D. Amouroux)
- WP 2 Molecular mechanisms of the acquisition of Iron in heterotrophic bacteria degrading particulate organic matter (WPL: R. Grimaud)
- WP 3 Metal mediated-metabolic interactions in complex multi-species microbial assemblages (WPL: B. Lauga, R. Duran)
- WP 4 Large scale high-throughput methods for metal binding ligands and metalligand complexes analysis and bioinformatics (WPL: R. Lobinski)

Hub E2S MeSMic Metals in Environmental Systems Microbiology

Hub MeSMic: A significant additional human potential - 6 Postdoc fellows and 6 Doctoral students during 5 years (2018-2023)

Work packages	Tasks	Months									
		1 - 6	7-12	13 -18	19 –24	25 - 30	31 -36	37-42	43-48	49-54	55-60
		Admin									
WP0	WP0 Coordination and management	D0.0	D0.1	D0.1, D02	D0.1, D0.2, D0.3	D0.1	D0.1, D0.2	D0.1	D0.1, D0.2, D0.3	D0.1	D0.1, D0.2
WP1	Task 1.1 Metal (Hg) binding thiols involved	PhD1									
	in transformation by bacteria				D1.1		D1.2				
WP1	Task 1.2 Competition and exchanges of					PD2					
	thiols in microbial consortia						D1.3			D1.4	
WP1	Task 1.3 Microbial transformation					PhD2	1D2				
	pathways and Hg isotopic fractionation									D1.5	
WP2	Task 2.1 Metallophore profiles of POM	PhD	3, PD1	PE	01						
	degrading bacteria		D2.1								
WP2	WP2 Task 2.2 Genes involved in the production			Ph	D3	PhD3, PD3		PI	PD3		
	of metallophores				D2.2		D2.3 D2.4				
WP2	Task 2.3 Interactions in biofilms degrading		PD1			PD3					
	POM under iron limitation								D2.6		D2.5
WP3	Task 3.1 Inventory of metallophores and			PhD4, PD5							
	identification of producers				D3.1						
WP3	Task 3.2 Metabolite production and metal					Phi	PhD4, PD5, PD4		PD4		
	species transformation in microcosms							D3.2 D3.3	D3.6		
WP3	Task 3.3 In silico analysis of metagenomics		PD4		D4						
	and genomic data								D3.4	D3.5	
WP4	Task 4.1 High throughput multielemental	PhD5									
	analysis of microsamples			D4.1		D4.4					
WP4	Task 4.2 Large scale analysis for metal-	PhD5, PD6 (PhD			(PhD6)	(PhD5) PhD6, PD7					
	ligand and metal-binding ligands			D4.2		D4.4					D4.4
WP4	Task 4.3 Database and bio-informatic			PD6		-			PD7		
	approaches to data mining			D.4.3		D4.4					D4.4

PhD: Doctorate student, PD: Post-doc fellow, Admin: Administrative technician, D: Deliverables

WP1 – Context and Hypothesis

Hg transformation pathways drive Hg exposure, toxicity and remediation solutions

Algae

WP1 - Objectives and Methods

Objectives: Decipher mercury species transformation pathways and interactions with biotic ligands (thiols) produced by microorganisms of different ecological role.

WP2 – Context and Hypothesis

Respiratory chain contains 94 % of cellular iron Working hypothesis

Because of their high respiration rate, bacteria in POM-degrading biofilms should have a high iron demand

They may have specific iron acquisition systems

WP2 - Objectives and Methods

Objectives

Identification of metallophore produced in POM degrading biofilms

Identification of the genes/proteins involved in metallophores production

Regulation of expression of metallophore genes in POM degrading biofilms.

Role of the amphiphilic and photoreactive characters of siderophore

Exploration of isotopic fractionation of iron in POM degrading bacteria

Methods

Model bacteria forming biofilms on proteins lipids hydrocarbons

Genes identification: Tn mutagenesis, Tnseq, transcriptomic

Biofilm characterization: flurescence microscopy, biochemistry

Siderophore identification: HPLC- high resolution mass accuracy MS

WP3 – Context and Hypothesis

Hypothesis: Metallophores contribute to microbial community structuration

WP3 - Objectives and Methods

Objectives

Inventory of metallophores (Met) produced in natural environments

Identification of potential Met producers in natural environments

Identification of genes involved in the synthesis of Met

Linking Met production to community structure and functioning

In silico mining to retrieve eco-evolutionary significance of Met production

Methods

Prospecting natural environment considering gradients in a marine context

Taxonomic and functional characterization of communities (omics + isotopic)

Natural environments /// Microcosms experiments

Mining genomes and metagenomes for genes involved in Met biosynthesis

WP4 – Context and Hypothesis

Metal ion paradox (?)

WP4 - Objectives and Methods

The identification and quantification of the metal-binding species produced by microbiota

- Improve metallophore-dedicated methods for:
- sample preparation \rightarrow preconcentration and selective extraction
- analytical development → effective LC MS couplings
- data treatment \rightarrow high throughput and big data
- microbiota culture conditions \rightarrow trigger metallophore production

Merci de votre attention

CONTACT

David AMOUROUX Marisol GONI Régis GRIMAUD Béatrice LAUGA Robert DURAN Ryszard LOBINSKI

IPREM UMR 5254, CNRS-UPPA

david.amouroux@univ-pau.fr

Iprem.univ-pau.fr

IPREM Institut des sciences analytiques et de physico-chimie pour l'environnement et les matériaux

energy environment solutions